Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.060
1.
Mol Biol Rep ; 51(1): 657, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740636

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS: In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS: The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.


ATP Binding Cassette Transporter 1 , RNA, Messenger , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Female , Male , India , Adult , RNA, Messenger/genetics , RNA, Messenger/metabolism , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mycobacterium tuberculosis/genetics , Case-Control Studies , Receptors, Steroid/genetics , Receptors, Steroid/metabolism
2.
Metabolomics ; 19(6): 55, 2023 06 07.
Article En | MEDLINE | ID: mdl-37284915

INTRODUCTION: Various studies have identified TB-induced metabolome variations. However, in most of these studies, a large degree of variation exists between individual patients. OBJECTIVES: To identify differential metabolites for TB, independent of patients' sex or HIV status. METHODS: Untargeted GCxGC/TOF-MS analyses were applied to the sputum of 31 TB + and 197 TB- individuals. Univariate statistics were used to identify metabolites which are significantly different between TB + and TB- individuals (a) irrespective of HIV status, and (b) with a HIV + status. Comparisons a and b were repeated for (i) all participants, (ii) males only and (iii) females only. RESULTS: Twenty-one compounds were significantly different between the TB + and TB- individuals within the female subgroup (11% lipids; 10% carbohydrates; 1% amino acids, 5% other and 73% unannotated), and 6 within the male subgroup (20% lipids; 40% carbohydrates; 6% amino acids, 7% other and 27% unannotated). For the HIV + patients (TB + vs. TB-), a total of 125 compounds were significant within the female subgroup (16% lipids; 8% carbohydrates; 12% amino acids, 6% organic acids, 8% other and 50% unannotated), and 44 within the male subgroup (17% lipids; 2% carbohydrates; 14% amino acids related, 8% organic acids, 9% other and 50% unannotated). Only one annotated compound, 1-oleoyl lysophosphaditic acid, was consistently identified as a differential metabolite for TB, irrespective of sex or HIV status. The potential clinical application of this compound should be evaluated further. CONCLUSIONS: Our findings highlight the importance of considering confounders in metabolomics studies in order to identify unambiguous disease biomarkers.


HIV Infections , Tuberculosis, Pulmonary , Tuberculosis , Humans , Male , Female , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/complications , Tuberculosis, Pulmonary/metabolism , Sputum/metabolism , Metabolomics , Tuberculosis/metabolism , Metabolome , Amines/metabolism , HIV Infections/complications , Amino Acids/metabolism , Carbohydrates , Lipids
3.
Allergol. immunopatol ; 51(2): 27-35, 01 mar. 2023. graf
Article En | IBECS | ID: ibc-216810

Background: Tracheobronchial stenosis due to tuberculosis (TSTB) seriously threatens the health of tuberculosis patients. The inflammation and autophagy of fibroblasts affect the development of TSTB. Triamcinolone acetonide (TA) can regulate the autophagy of fibroblasts. Nevertheless, the impact of TA on TSTB and underlying mechanism has remained unclear. Objective: To study the impact of TA on TSTB and underlying mechanism. Material and Methods: In order to simulate the TSTB-like model in vitro, WI-38 cells were exposed to Ag85B protein. In addition, the cell counting kit (CCK)-8 assay was applied to assess the function of TA in Ag85B-treated WI-38 cells. Quantitative real-time polymerase chain reaction was applied to detect the mRNA level of sirtuin 1 (SIRT1) and forkhead box O3 (FOXO3a), and autophagy-related proteins were evaluated by Western blot analysis. Vascular endothelial growth factor (VEGF) level was investigated by immunohistochemical staining. Enzyme-linked immunosorbent serologic assay was applied to detect the secretion of inflammatory cytokines. Furthermore, hematoxylin and eosin staining was applied to observe tissue injuries. Results: Ag85B affected WI-38 cell viability in a limited manner, while TA notably suppressed Ag85B-treated WI-38 cell viability. TA induced the apoptosis of Ag85B-treated WI-38 cells in a dose-dependent manner. In addition, Ag85B-treated WI-38 cells demonstrated the upregulation of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), interferon gamma (IFN-γ), and fibrotic proteins (transforming growth factor-beta [TGF-β] and vascular endothelial growth factor [VEGF]), which can be significantly destroyed by the TA. Meanwhile, TA reversed Ag85-induced inhibition of cell autophagy by mediation of p62, LC3, and Beclin1 (AU)


Humans , Triamcinolone Acetonide/pharmacology , Autophagy , Sirtuins/metabolism , Forkhead Box Protein O3/metabolism , Tracheal Stenosis/metabolism , Tuberculosis, Pulmonary/metabolism , Polymerase Chain Reaction , Signal Transduction , Cells, Cultured
4.
PLoS One ; 18(2): e0281757, 2023.
Article En | MEDLINE | ID: mdl-36787336

This study aimed at exploring the proteomic profile of PBMCs to predict treatment response in pulmonary tuberculosis (PTB). This was a pilot study conducted among 8 adult patients from Zanzibar, Tanzania with confirmed PTB. Blood samples were collected at baseline, at 2 months of treatment, and at the end of treatment at 6 months. Proteins were extracted from PBMCs and analyzed using LC-MS/MS based label free quantitative proteomics. Overall, 3,530 proteins were quantified across the samples, and 12 differentially expressed proteins were identified at both 2 months of treatment and at treatment completion, which were involved in cellular and metabolic processes, as well as binding and catalytic activity. Seven were downregulated proteins (HSPA1B/HSPA1A, HSPH1, HSP90AA1, lipopolysaccharide-binding protein, complement component 9, calcyclin-binding protein, and protein transport protein Sec31A), and 5 proteins were upregulated (SEC14 domain and spectrin repeat-containing protein 1, leucine-rich repeat-containing 8 VRAC subunit D, homogentisate 1,2-dioxygenase, NEDD8-activating enzyme E1 regulatory subunit, and N-acetylserotonin O-methyltransferase-like protein). The results showed that proteome analysis of PBMCs can be used as a novel technique to identify protein abundance change with anti-tuberculosis treatment. The novel proteins elucidated in this work may provide new insights for understanding PTB pathogenesis, treatment, and prognosis.


Leukocytes, Mononuclear , Tuberculosis, Pulmonary , Adult , Humans , Leukocytes, Mononuclear/metabolism , Pilot Projects , Tanzania , Proteomics/methods , Chromatography, Liquid , Tandem Mass Spectrometry , Proteome/metabolism , Tuberculosis, Pulmonary/metabolism
5.
J Interferon Cytokine Res ; 43(2): 98-103, 2023 02.
Article En | MEDLINE | ID: mdl-36516121

Macrophage migration inhibitory factor (MIF) is an inflammatory mediator in several diseases, including tuberculosis (TB). However, the role of MIF in each stage of TB remains to be further elucidated. Thus, this study aimed to analyze the differences in plasma MIF protein levels in patients with active pulmonary TB, positive and negative interferon-gamma release assay (IGRA) household contacts (HHCs), and healthy controls (HCs). Plasma MIF concentration was significantly higher in patients with active-new pulmonary tuberculosis (ATB) and HHCs compared with HCs (mean ± standard deviation: 17.32 ± 16.85, 16.29 ± 14.21, and 7.29 ± 5.39 ng/mL, respectively; P = 0.002). The plasma MIF concentration was not statistically different when compared between patients with ATB, IGRA-positive HHCs (17.44 ± 16.6 ng/mL), and IGRA-negative HHCs (14.34 ± 8.7 ng/mL) (P = 0.897). In conclusion, ATB patients, IGRA-positive HHCs, and IGRA-negative HHCs have a higher MIF concentration than HCs. This shows the involvement of MIF in each stage of TB, starting from TB exposure and infection, but not symptomatic, to the active stage.


Macrophage Migration-Inhibitory Factors , Tuberculosis, Pulmonary , Tuberculosis , Humans , Interferon-gamma Release Tests , Macrophage Migration-Inhibitory Factors/blood , Macrophage Migration-Inhibitory Factors/chemistry , Tuberculosis/diagnosis , Tuberculosis/metabolism , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/metabolism
6.
EBioMedicine ; 85: 104278, 2022 Nov.
Article En | MEDLINE | ID: mdl-36202053

BACKGROUND: To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). METHODS: Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα-/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo. FINDINGS: SIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα-/-→WT treatment could decrease the inflammation and maintain the bactericidal capacity. INTERPRETATION: Our data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis. FUNDING: This work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Animals , Mice , Autophagy/genetics , Focal Adhesion Kinase 2/metabolism , Homeostasis , Macrophages/metabolism , Mice, Inbred C57BL , Necroptosis , Tuberculosis/microbiology , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism , Humans
7.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(4): 555-562, 2022 Aug.
Article Zh | MEDLINE | ID: mdl-36065686

Objective To explore the therapeutic effect of ethambutol tablets (EMB) on pulmonary tuberculosis (PTB) in rats and whether the action mechanism of EMB is related to Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Methods Sixty SD rats were assigned into a control group,a PTB group,a PTB+EMB group (30 mg/kg),and a PTB+EMB+Colivelin (JAK/STAT pathway activator) group (30 mg/kg+1 mg/kg) via the random number table method,with 15 rats in each group.The rats in other groups except the control group were injected with 0.2 ml of 5 mg/ml Mycobacterium tuberculosis suspension to establish the PTB model.After the modeling,the rats were administrated with corresponding drugs for 4 consecutive weeks (once a day).On days 1,14,and 28 of administration,the body weights of rats were measured and the Mycobacterium tuberculosis colonies were counted.Hematoxylin-eosin staining was carried out to detect the pathological changes in the lung tissue.Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin(IL)-6,tumor necrosis factor-α (TNF-α),IL-1ß,and interferon-γ (IFN-γ) in the serum.Flow cytometry was used to determine the levels of T lymphocyte subsets CD3+,CD4+,CD8+,and CD4+/CD8+.The 16S rRNA sequencing was performed to detect the relative abundance of the intestinal microorganisms.Western blotting was employed to determine the expression of the proteins in the JAK/STAT pathway. Results Compared with the control group,the modeling of PTB reduced the rat body weight (on days 14 and 28),increased Mycobacterium tuberculosis colonies,caused severe pathological changes in the lung tissue,and elevated the levels of IL-6,TNF-α,and IL-1ß in serum and CD8+.Moreover,the modeling increased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,and Veillonella in the intestine,up-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and lowered the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ levels (all P<0.001).Compared with the PTB group,PTB+EMB increased the rat body weight (on days 14 and 28),reduced Mycobacterium tuberculosis colonies,alleviated the pathological damage in lung tissue,lowered the levels of IL-6,TNF-α,and IL-1ß in serum and CD8+.Moreover,the treatment decreased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,Veillonella in the intestine,down-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and elevated the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ (all P<0.001).Colivelin weakened the alleviation effect of EMB on PTB (all P<0.001). Conclusion EMB can inhibit the JAK/STAT signaling pathway to alleviate the PTB in rat.


Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Animals , Body Weight , Ethambutol/pharmacology , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Janus Kinases/metabolism , Janus Kinases/pharmacology , Mycobacterium tuberculosis/metabolism , RNA, Ribosomal, 16S , Rats , Rats, Sprague-Dawley , STAT Transcription Factors/metabolism , STAT Transcription Factors/pharmacology , Signal Transduction , Tablets/pharmacology , Tuberculosis, Pulmonary/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
PLoS One ; 17(8): e0271234, 2022.
Article En | MEDLINE | ID: mdl-36040958

BACKGROUND: T cell activation (HLA-DR, CD-38), proliferation (KI-67), and functional (IFN-γ, TNF-α) markers have recently been shown to be useful in predicting and monitoring anti-TB responses in smear positive TB, but previous research did not characterize the activation and proliferation profiles after therapy of smear negative TB. METHODOLOGY: In this study, we used polychromatic flow cytometry to assess selected PPD-specific T cell markers using fresh PBMC of smear negative and positive pulmonary tuberculosis (PTB) patients, recruited from health facilities in Addis Ababa. RESULT: Levels of activation (HLA-DR, CD38) and proliferation (Ki-67) among total unstimulated CD4 T cells decreased significantly after therapy, particularly at month 6. Similarly, levels of PPD-specific T cell activation markers (HLA-DR, CD-38) were significantly lower in smear positive PTB patients following treatment, whereas a consistent decline in these markers was less apparent among smear negative PTB patients at the sixth month. CONCLUSION: After six months of standard anti-TB therapy, persistent levels of activation of HLA-DR and CD-38 from PPD specific CD4+T cells in this study could indicate that those markers have little value in monitoring and predicting anti-TB treatment response in smear negative pulmonary TB patients in Ethiopian context.


Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Tuberculosis, Pulmonary , CD4-Positive T-Lymphocytes , Ethiopia , HLA-DR Antigens/metabolism , Humans , Ki-67 Antigen/metabolism , Leukocytes, Mononuclear/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculin/metabolism , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/metabolism
9.
Life Sci ; 301: 120614, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35526591

AIMS: Previous studies in TB patients showed an immuno-endocrine imbalance characterized by a disease-severity associated increase in plasma levels of proinflammatory cytokines and glucocorticoids (GCs). To analyze the potential immunomodulatory effect of circulating GCs over peripheral blood mononuclear cells (PBMC) from TB patients, we investigated the expression of positively (anti-inflammatory-related genes ANXA1; FKBP51; GILZ, NFKBIA, and NFKBIB) and negatively (inflammatory genes: IL-6, IL-1ß, and IFN-γ) Glucocorticoids Receptors (GR)-regulated genes. Plasma concentrations of cytokines and hormones, together with specific lymphoproliferation were also assessed. MATERIALS AND METHODS: Gene expression was quantified by RT-qPCR, specific lymphoproliferation by 3H-thymidine incorporation, whereas plasma cytokines and hormones levels by ELISA. KEY FINDINGS: Transcripts of ANXA1, GILZ, NFKBIB, and NFKBIA appeared significantly increased in patients, whereas FKBP51, IL-6, IL-1ß, and NF-κB remained unchanged. Upon analyzing according to disease severity, mRNA levels for ANXA1 and NFKBIB were even higher in moderate and severe patients. GILZ was increased in moderate cases, with NFKBIA and IL-1 ß being higher in severe ones, who also displayed increased GRß transcripts. TB patients had reduced plasma DHEA concentrations together with increased pro and anti-inflammatory cytokines (IFN-γ, IL-6, and IL-10) cortisol and cortisol/DHEA ratio, more evident in progressive cases, in whom their PBMC also showed a decreased mycobacterial-driven proliferation. The cortisol/DHEA ratio and GRα expression were positively correlated with GR-regulated genes mainly in moderate patients. SIGNIFICANCE: The increased expression of cortisol-regulated anti-inflammatory genes in TB patients-PBMC, predominantly in progressive disease, seems compatible with a relatively insufficient attempt to downregulate the accompanying inflammation.


Receptors, Glucocorticoid , Tuberculosis, Pulmonary , Cytokines/metabolism , Dehydroepiandrosterone/pharmacology , Glucocorticoids/pharmacology , Humans , Hydrocortisone/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism
10.
Microbiol Spectr ; 10(1): e0190121, 2022 02 23.
Article En | MEDLINE | ID: mdl-35196800

The microbiota plays an important role in human health and disease development. The lung microbiota profile in pulmonary tuberculosis (TB) patients and the effects of anti-TB treatment on the profile need to be determined thoroughly and comprehensively. This study primarily aimed to determine the lung microbiota profile associated with pulmonary TB and characterize the longitudinal changes during anti-TB treatment. A total of 53 participants, comprising 8 healthy individuals, 12 untreated pulmonary TB patients, 15 treated pulmonary TB patients, 11 cured pulmonary TB patients, and 7 lung cancer patients, were recruited in the present study. Bronchioalveolar lavage fluid (BALF) samples were collected from the above participants, and throat swabs were taken from healthy individuals. Microbiomes in the samples were examined using metagenomic next-generation sequencing (mNGS). Differences in microbiota profiles were determined through a comparison of the indicated groups. Our findings indicated that the BALF samples displayed decreased richness and diversity of the microbiota compared to those of the throat swab samples, and these two kinds of samples exhibited obvious separation on principal-coordinate analysis (PCoA) plots. Untreated pulmonary TB patients displayed a unique lung microbiota signature distinct from that of healthy individuals and lung cancer patients. Our data first demonstrated that anti-TB treatment with first-line drugs increases alpha diversity and significantly affects the beta diversity of the lung microbiota, while it also induces antibiotic resistance genes (ARGs). IMPORTANCE Characterization of the lung microbiota could lead to a better understanding of the pathogenesis of pulmonary TB. Here, we applied the metagenomic shotgun sequencing instead of 16S rRNA sequencing method to characterize the lung microbiota using the BALF samples instead of sputum. We found that alterations in the lung microbiota are associated with TB infection and that anti-TB treatment significantly affects the alpha and beta diversity of the lung microbiota in pulmonary TB patients. These findings could help us better understand TB pathogenesis.


High-Throughput Nucleotide Sequencing/methods , Lung/microbiology , Metagenome , Metagenomics/methods , Microbiota/physiology , Tuberculosis, Pulmonary/metabolism , Adult , Bronchoalveolar Lavage Fluid , Drug Resistance, Bacterial , Female , Humans , Male , Microbiota/drug effects , Mycobacterium tuberculosis , RNA, Ribosomal, 16S/genetics , Sputum , Tuberculosis, Pulmonary/drug therapy
11.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article En | MEDLINE | ID: mdl-35163542

The PD-1/PD-L1 pathway is critical in T cell biology; however, the role of the PD-1/PD-L1 pathway in clinical characteristics and treatment outcomes in pulmonary tuberculosis (PTB) patients is unclear. We prospectively enrolled PTB, latent TB infection (LTBI), and non-TB, non-LTBI subjects. The expression of PD-1/PD-L1 on peripheral blood mononuclear cells (PBMCs) was measured and correlated with clinical characteristics and treatment outcomes in PTB patients. Immunohistochemistry and immunofluorescence were used to visualize PD-1/PD-L1-expressing cells in lung tissues from PTB patients and from murine with heat-killed MTB (HK-MTB) treatment. A total of 76 PTB, 40 LTBI, and 28 non-TB, non-LTBI subjects were enrolled. The expression of PD-1 on CD4+ T cells and PD-L1 on CD14+ monocytes was significantly higher in PTB cases than non-TB subjects. PTB patients with sputum smear/culture unconversion displayed higher PD-L1 expression on monocytes. PD-L1-expressing macrophages were identified in lung tissue from PTB patients, and co-localized with macrophages in murine lung tissues. Mycobacterium tuberculosis (MTB) whole cell lysate/EsxA stimulation of human and mouse macrophages demonstrated increased PD-L1 expression. In conclusion, increased expression of PD-L1 on monocytes in PTB patients correlated with higher bacterial burden and worse treatment outcomes. The findings suggest the involvement of the PD-1/PD-L1 pathway in MTB-related immune responses.


Antitubercular Agents/pharmacology , B7-H1 Antigen/metabolism , Latent Tuberculosis/metabolism , Leukocytes, Mononuclear/metabolism , Mycobacterium tuberculosis/pathogenicity , Programmed Cell Death 1 Receptor/metabolism , Tuberculosis, Pulmonary/metabolism , Up-Regulation , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antitubercular Agents/therapeutic use , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Female , Humans , Latent Tuberculosis/microbiology , Male , Mice , Middle Aged , Mycobacterium tuberculosis/drug effects , THP-1 Cells , Treatment Outcome , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Young Adult
12.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article En | MEDLINE | ID: mdl-35216083

Tuberculosis (TB) is one of the ten leading causes of death worldwide. Patients with TB have been observed to suffer from depression and anxiety linked to social variables. Previous experiments found that the substantial pulmonary inflammation associated with TB causes neuroinflammation, neuronal death, and behavioral impairments in the absence of brain infection. Curcumin (CUR) is a natural product with antioxidant, anti-inflammatory and antibacterial activities. In this work, we evaluated the CUR effect on the growth control of mycobacteria in the lungs and the anti-inflammatory effect in the brain using a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive mycobacteria (strain H37Rv). The results have shown that CUR decreased lung bacilli load and pneumonia of infected animals. Finally, CUR significantly decreased neuroinflammation (expression of TNFα, IFNγ and IL12) and slightly increased the levels of nuclear factor erythroid 2-related to factor 2 (Nrf2) and the brain-derived neurotrophic factor (BDNF) levels, improving behavioral status. These results suggest that CUR has a bactericidal effect and can control pulmonary mycobacterial infection and reduce neuroinflammation. It seems that CUR has a promising potential as adjuvant therapy in TB treatment.


Anti-Inflammatory Agents/pharmacology , Antitubercular Agents/pharmacology , Brain/microbiology , Curcumin/pharmacology , Lung/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis/drug therapy , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/drug effects , Tuberculosis/metabolism , Tuberculosis, Pulmonary/metabolism
13.
PLoS One ; 17(1): e0262545, 2022.
Article En | MEDLINE | ID: mdl-35073339

Insight into the metabolic biosignature of tuberculosis (TB) may inform clinical care, reduce adverse effects, and facilitate metabolism-informed therapeutic development. However, studies often yield inconsistent findings regarding the metabolic profiles of TB. Herein, we conducted an untargeted metabolomics study using plasma from 63 Korean TB patients and 50 controls. Metabolic features were integrated with the data of another cohort from China (35 TB patients and 35 controls) for a global functional meta-analysis. Specifically, all features were matched to a known biological network to identify potential endogenous metabolites. Next, a pathway-level gene set enrichment analysis-based analysis was conducted for each study and the resulting p-values from the pathways of two studies were combined. The meta-analysis revealed both known metabolic alterations and novel processes. For instance, retinol metabolism and cholecalciferol metabolism, which are associated with TB risk and outcome, were altered in plasma from TB patients; proinflammatory lipid mediators were significantly enriched. Furthermore, metabolic processes linked to the innate immune responses and possible interactions between the host and the bacillus showed altered signals. In conclusion, our proof-of-concept study indicated that a pathway-level meta-analysis directly from metabolic features enables accurate interpretation of TB molecular profiles.


Metabolome , Tuberculosis, Pulmonary/metabolism , Adolescent , Adult , Case-Control Studies , Female , Humans , Male , Metabolic Networks and Pathways , Metabolomics , Middle Aged , Tuberculosis, Pulmonary/blood , Young Adult
14.
Am J Trop Med Hyg ; 105(6): 1645-1656, 2021 10 18.
Article En | MEDLINE | ID: mdl-34662867

India has the highest rates of tuberculosis (TB) globally and a high prevalence of malnutrition; however, the interplay between host nutritional status, inflammation, and the gut microbiome in active tuberculosis disease (ATBD) is less well-studied. We examined differences in gut microbial composition and diversity based on undernutrition and inflammation status among outpatients with ATBD at the time of treatment initiation. During this exploratory cross-sectional study, outpatients (N = 32) with ATBD (confirmed by Xpert MTB/RIF) were enrolled in anti-TB treatment initiated at a hospital in rural southern India. The 16S rRNA sequencing was used to assess the composition of the gut microbiome. We assessed multiple markers of nutritional status, including micronutrient status concentrations (vitamin D [25(OH)D], vitamin B12, ferritin), anthropometry (body mass index, mid-upper arm circumference, and height), and C-reactive protein (CRP), as indicators of inflammation. We found that 25(OH)D was positively associated with the relative abundance of Oscillospira spp., a butyrate-producing genus linked with anti-inflammation effects, and that ferritin was positively associated with Proteobacteria taxa, which have been associated with worse inflammation in other studies. Finally, we found a greater abundance of inflammation-associated taxa from the Proteobacteria phylum and lower alpha-diversity indices among those who were underweight or who had low mid-upper arm circumference or short stature. In summary, we found differences in the gut microbiota composition and diversity among those with undernutrition compared with those with adequate nutrition status at the time of initiation of treatment among patients with ATBD in India. Clinical implications of these findings will need to be examined by larger longitudinal studies.


Gastrointestinal Microbiome , Inflammation/metabolism , Iron Deficiencies/metabolism , Nutritional Status , Thinness/metabolism , Tuberculosis, Pulmonary/metabolism , Vitamin B 12 Deficiency/metabolism , Vitamin D Deficiency/metabolism , Adult , Antitubercular Agents/therapeutic use , Arm/anatomy & histology , C-Reactive Protein/metabolism , Female , Ferritins/metabolism , Humans , India/epidemiology , Inflammation/microbiology , Iron Deficiencies/epidemiology , Iron Deficiencies/microbiology , Male , Middle Aged , Organ Size , Thinness/epidemiology , Thinness/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology , Vitamin B 12 Deficiency/epidemiology , Vitamin B 12 Deficiency/microbiology , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/microbiology
15.
Mol Immunol ; 140: 136-143, 2021 12.
Article En | MEDLINE | ID: mdl-34710721

Host innate immune responses to tuberculosis are poorly explored. Recent findings emphasize the importance of innate cells in working against Mycobacterium tuberculosis, the etiologic agent of this deadly disease. In this study we have tried to learn the role of neutrophils in building up immunity against this pathogen during therapy. We isolated neutrophils from peripheral blood of healthy volunteers and pulmonary tuberculosis patients at different phases of their treatment and cultured them withtoll like receptor ligands overnight. Toll like receptor 2 and 4 expression on neutrophils was analyzed using flow cytometry. The supernatants were used to measure cytokines. We found that in tuberculosis patients, expression of TLR2, a proven receptor of Mycobacterium tuberculosis on neutrophils, was increased throughout the duration of therapy (measured at diagnosis, second month and sixth month of therapy). This demonstrates that TLR2 expression is altered as a result of treatment, but not TLR4. Also, the chemokines IL-8 and MIP1α showed a 'dip and raise' fashion as the therapy proceeded. Even though the increase in the pro-inflammatory cytokine secretion by neutrophils seen at the end of therapy is not as expected, it definitely increases our understanding on the function of these cells during TB disease and its resolution and opens new direction in neutrophil research.


Cytokines/metabolism , Neutrophils/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tuberculosis, Pulmonary/metabolism , Adult , Chemokine CCL3/metabolism , Female , Fluorescence , Humans , Interleukin-8/metabolism , Longitudinal Studies , Male , Tuberculosis, Pulmonary/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Young Adult
16.
PLoS Pathog ; 17(9): e1009941, 2021 09.
Article En | MEDLINE | ID: mdl-34559866

The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1ß-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1ß were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1ß-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.


Citric Acid Cycle/physiology , Inflammation/metabolism , Signal Transduction/physiology , Tuberculosis, Pulmonary/metabolism , Humans
17.
Microbiol Spectr ; 9(2): e0048121, 2021 10 31.
Article En | MEDLINE | ID: mdl-34494858

There is a critical need for improved pharmacodynamic markers for use in human tuberculosis (TB) drug trials. Pharmacodynamic monitoring in TB has conventionally used culture or molecular methods to enumerate the burden of Mycobacterium tuberculosis organisms in sputum. A recently proposed assay called the rRNA synthesis (RS) ratio measures a fundamentally novel property, how drugs impact ongoing bacterial rRNA synthesis. Here, we evaluated RS ratio as a potential pharmacodynamic monitoring tool by testing pretreatment sputa from 38 Ugandan adults with drug-susceptible pulmonary TB. We quantified the RS ratio in paired pretreatment sputa and evaluated the relationship between the RS ratio and microbiologic and molecular markers of M. tuberculosis burden. We found that the RS ratio was highly repeatable and reproducible in sputum samples. The RS ratio was independent of M. tuberculosis burden, confirming that it measures a distinct new property. In contrast, markers of M. tuberculosis burden were strongly associated with each other. These results indicate that the RS ratio is repeatable and reproducible and provides a distinct type of information from markers of M. tuberculosis burden. IMPORTANCE This study takes a major next step toward practical application of a novel pharmacodynamic marker that we believe will have transformative implications for tuberculosis. This article follows our recent report in Nature Communications that an assay called the rRNA synthesis (RS) ratio indicates the treatment-shortening of drugs and regimens. Distinct from traditional measures of bacterial burden, the RS ratio measures a fundamentally novel property, how drugs impact ongoing bacterial rRNA synthesis.


Mycobacterium tuberculosis/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Sputum/microbiology , Tuberculosis, Pulmonary/microbiology , Adult , Biomarkers/metabolism , Female , Humans , Male , Mycobacterium tuberculosis/genetics , RNA, Bacterial/metabolism , RNA, Ribosomal/metabolism , Sputum/chemistry , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism
18.
Am J Respir Crit Care Med ; 204(11): 1327-1335, 2021 12 01.
Article En | MEDLINE | ID: mdl-34403326

Rationale: There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. Objectives: To characterize the association between isoniazid pharmacokinetics (standard or high dose) and early bactericidal activity against M. tuberculosis (drug sensitive and inhA mutated) and N-acetyltransferase 2 status. Methods: ACTG (AIDS Clinical Trial Group) A5312/INHindsight is a 7-day early bactericidal activity study with isoniazid at a normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary tuberculosis received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (cfu) on solid culture and time to positivity in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. Measurements and Main Results: Fifty-nine adults were included in this analysis. A decline in sputum cfu was described by a one-compartment model, whereas an exponential bacterial growth model was used to interpret time-to-positivity data. The model found that bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship (a model linking the drug concentration to the observed effect). The model predicted lower potency but similar maximum kill of isoniazid against inhA-mutated compared with drug-sensitive isolates. Based on simulations from the pharmacokinetics-pharmacodynamics model, to achieve a drop in bacterial load comparable to 5 mg/kg against drug-sensitive tuberculosis, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. Conclusions: Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Antitubercular Agents/administration & dosage , Isoniazid/administration & dosage , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Adult , Antitubercular Agents/pharmacokinetics , Arylamine N-Acetyltransferase , Bacterial Proteins , Colony Count, Microbial , Dose-Response Relationship, Drug , Female , Humans , Isoniazid/pharmacokinetics , Male , Microbial Sensitivity Tests , Middle Aged , Oxidoreductases , Tuberculosis, Multidrug-Resistant/metabolism , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology , Young Adult
19.
Am J Respir Crit Care Med ; 204(11): 1317-1326, 2021 12 01.
Article En | MEDLINE | ID: mdl-34375564

Rationale: Standardized dosing of antitubercular drugs contributes to a substantial incidence of toxicities, inadequate treatment response, and relapse, in part due to variable drug concentrations achieved. SNPs in the NAT2 (N-acetyltransferase-2) gene explain the majority of interindividual pharmacokinetic variability of isoniazid (INH). However, an obstacle to implementing pharmacogenomic-guided dosing is the lack of a point-of-care assay. Objectives: To develop and test a NAT2 classification algorithm, validate its performance in predicting isoniazid clearance, and develop a prototype pharmacogenomic assay. Methods: We trained random forest models to predict NAT2 acetylation genotype from unphased SNP data using a global collection of 8,561 phased genomes. We enrolled 48 patients with pulmonary tuberculosis, performed sparse pharmacokinetic sampling, and tested the acetylator prediction algorithm accuracy against estimated INH clearance. We then developed a cartridge-based multiplex quantitative PCR assay on the GeneXpert platform and assessed its analytical sensitivity on whole blood samples from healthy individuals. Measurements and Main Results: With a 5-SNP model trained on two-thirds of the data (n = 5,738), out-of-sample acetylation genotype prediction accuracy on the remaining third (n = 2,823) was 100%. Among the 48 patients with tuberculosis, predicted acetylator types were 27 (56.2%) slow, 16 (33.3%) intermediate, and 5 (10.4%) rapid. INH clearance rates were lowest in predicted slow acetylators (median 14.5 L/h), moderate in intermediate acetylators (median 40.3 L/h), and highest in fast acetylators (median 53.0 L/h). The cartridge-based assay accurately detected all allele patterns directly from 25 µl of whole blood. Conclusions: An automated pharmacogenomic assay on a platform widely used globally for tuberculosis diagnosis could enable personalized dosing of INH.


Antitubercular Agents/pharmacokinetics , Arylamine N-Acetyltransferase/genetics , Isoniazid/pharmacokinetics , Pharmacogenomic Testing , Polymorphism, Genetic/genetics , Tuberculosis, Pulmonary/genetics , Algorithms , Antitubercular Agents/administration & dosage , Cohort Studies , Genotype , Humans , Isoniazid/administration & dosage , Multiplex Polymerase Chain Reaction , Pharmacogenetics , Predictive Value of Tests , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism
20.
Front Immunol ; 12: 695278, 2021.
Article En | MEDLINE | ID: mdl-34367155

Tuberculosis (TB) is one of the communicable diseases caused by Mycobacterium tuberculosis (Mtb) infection, affecting nearly one-third of the world's population. However, because the pathogenesis of TB is still not fully understood and the development of anti-TB drug is slow, TB remains a global public health problem. In recent years, with the gradual discovery and confirmation of the immunomodulatory properties of mesenchymal stem cells (MSCs), more and more studies, including our team's research, have shown that MSCs seem to be closely related to the growth status of Mtb and the occurrence and development of TB, which is expected to bring new hope for the clinical treatment of TB. This article reviews the relationship between MSCs and the occurrence and development of TB and the potential application of MSCs in the treatment of TB.


Lung/microbiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/microbiology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Pulmonary/surgery , Animals , Cytokines/metabolism , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mycobacterium tuberculosis/immunology , Treatment Outcome , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology
...